International Morse Code defines a standard encoding where each letter is mapped to a series of dots and dashes, as follows: “a” maps to “.-“, “b” maps to “-…”, “c” maps to “-.-.”, and so on.
For convenience, the full table for the 26 letters of the English alphabet is given below:
[".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."]
Now, given a list of words, each word can be written as a concatenation of the Morse code of each letter. For example, “cab” can be written as “-.-.-….-“, (which is the concatenation “-.-.” + “-…” + “.-“). We’ll call such a concatenation, the transformation of a word.
Return the number of different transformations among all words we have.
Example:
- Input: words = [“gin”, “zen”, “gig”, “msg”]
- Output: 2
- Explanation:
- The transformation of each word is:
“gin” -> “–…-.”
“zen” -> “–…-.”
“gig” -> “–…–.”
“msg” -> “–…–.”There are 2 different transformations, “–…-.” and “–…–.”.
Note:
- The length of words will be at most 100.
- Each words[i] will have length in range [1, 12].
- words[i] will only consist of lowercase letters.
나의 풀이
유니크한 값을 찾으면 다른 수의 경우도 나올 것 같아서 Set을 이용해보았다.1
2
3
4
5
6
7
8
9
10
11
12
13
14
15// 64ms
const morse = [".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."];
const alphabet = 'abcdefghijklmnopqrstuvwxyz';
var uniqueMorseRepresentations = function(words) {
const morseWords = new Set();
for (const word of words) {
let newStr = '';
for(const i of word) {
newStr += morse[alphabet.indexOf(i)];
}
morseWords.add(newStr)
}
return morseWords.size;
};